Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Mol Brain ; 16(1): 79, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980537

RESUMO

Protein kinases are responsible for protein phosphorylation and are involved in important intracellular signal transduction pathways in various cells, including neurons; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), related to as candidate regulators of neurite outgrowth and synaptogenesis, by examining the effects of a selective MAP4K inhibitor PF06260933. PF06260933 treatments of the cultured neurons reduced neurite lengths, not the number of synapses, and phosphorylation of GAP43 and JNK, relative to the control. These results suggest that MAP4Ks are physiologically involved in normal neuronal development and that the resultant impaired neurite outgrowth by diminished MAP4Ks' activity, is related to psychiatric disorders.


Assuntos
Neuritos , Neurônios , Humanos , Neurônios/metabolismo , Neuritos/metabolismo , Transdução de Sinais , Fosforilação , Crescimento Neuronal
3.
Mol Brain ; 15(1): 68, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883152

RESUMO

Protein kinases are responsible for protein phosphorylation and are involved in important signal transduction pathways; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered cyclin G-associated kinase (GAK) as a candidate regulator of neurite outgrowth and synaptogenesis by examining the effects of the selective GAK inhibitor SGC-GAK-1. SGC-GAK-1 treatment of cultured neurons reduced neurite length and decreased synapse number and phosphorylation of neurofilament 200-kDa subunits relative to the control. In addition, the related kinase inhibitor erlotinib, which has distinct specificity and potency from SGC-GAK-1, had no effect on neurite growth, unlike SGC-GAK-1. These results suggest that GAK may be physiologically involved in normal neuronal development, and that decreased GAK function and the resultant impaired neurite outgrowth and synaptogenesis may be related to neurodevelopmental disorders.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , Ciclinas , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , Ciclina G , Ciclinas/farmacologia , Neuritos , Crescimento Neuronal , Inibidores de Proteínas Quinases/farmacologia , Sinapses
4.
Exp Neurol ; 355: 114117, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588791

RESUMO

Recovery from spinal cord injury (SCI) and other central nervous system (CNS) trauma is hampered by limits on axonal regeneration in the CNS. Regeneration is restricted by the lack of neuron-intrinsic regenerative capacity and by the repressive microenvironment confronting damaged axons. To address this challenge, we have developed a therapeutic strategy that co-targets kinases involved in both extrinsic and intrinsic regulatory pathways. Prior work identified a kinase inhibitor (RO48) with advantageous polypharmacology (co-inhibition of targets including ROCK2 and S6K1), which promoted CNS axon growth in vitro and corticospinal tract (CST) sprouting in a mouse pyramidotomy model. We now show that RO48 promotes neurite growth from sensory neurons and a variety of CNS neurons in vitro, and promotes CST sprouting and/or regeneration in multiple mouse models of spinal cord injury. Notably, these in vivo effects of RO48 were seen in several independent experimental series performed in distinct laboratories at different times. Finally, in a cervical dorsal hemisection model, RO48 not only promoted growth of CST axons beyond the lesion, but also improved behavioral recovery in the rotarod, gridwalk, and pellet retrieval tasks. Our results provide strong evidence for RO48 as an effective compound to promote axon growth and regeneration. Further, they point to strategies for increasing robustness of interventions in pre-clinical models.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Axônios/patologia , Modelos Animais de Doenças , Camundongos , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Tratos Piramidais/patologia , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
5.
Exp Neurol ; 354: 114085, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460760

RESUMO

Injuries to the cervical spinal cord represent around 60% of all spinal cord injuries (SCIs). A major priority for patients with cervical SCIs is the recovery of any hand or arm function. The similarities between human and rodent "reach-to-eat movements" indicate that analyzing mouse forelimb reaching behavior may be a method of identifying clinically relevant treatments for people with cervical SCIs. One popular behavioral measure of forelimb functional recovery comprises the Single Pellet Retrieval Task (SPRT). The most common outcome measure for this task, however (percentage of pellets successfully retrieved), cannot readily distinguish between recovery of pre-injury motor patterns and strategic compensation. Our objective was to establish outcome measures for the SPRT that are readily adopted by different investigators and capable of measuring recovery of limb function after SCI. We used a simple semi-automated approach to high-speed tracking of mouse forepaw movements during pellet retrieval. DeepLabCut™, a machine learning based computer vision software package, was used to track individual features of the mouse forepaw, allowing a more detailed assessment of reaching behavior after SCI. Interestingly, kinematic analysis of movements pre- and post-injury illuminated persistent deficits in specific features of the reaching motor patterns, namely pronation and paw trajectory, that were poorly correlated with recovery of the ability to successfully retrieve pellets. Thus, we have developed an inexpensive method for detailed analysis of mouse reach-to-eat behavior following SCI. Further, our results suggest that binary success/fail outcome measures primarily assess an animal's ability to compensate rather than a restoration of normal function in the injured pathways and networks.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Animais , Medula Cervical/lesões , Modelos Animais de Doenças , Membro Anterior , Humanos , Camundongos , Destreza Motora , Recuperação de Função Fisiológica , Medula Espinal
6.
FEBS Lett ; 596(3): 294-308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890048

RESUMO

The cell fate transition from radial glial-like (RGL) cells to neurons and astrocytes is crucial for development and pathological conditions. Two chromatin repressors-the enhancer of zeste homolog 2 and suppressor of variegation 4-20 homolog-are expressed in RGL cells in the hippocampus, implicating these epigenetic regulators in hippocampal cell fate commitment. Using a double knockout mouse model, we demonstrated that loss of both chromatin repressors in the RGL population leads to deficits in hippocampal development. Single-nuclei RNA-Seq revealed differential gene expression and provided mechanistic insight into how the two chromatin repressors are critical for the maintenance of cycling cells in the dentate gyrus as well as the balance of cell trajectories between neuronal and astroglial lineages.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste
7.
SLAS Discov ; 26(10): 1337-1354, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34218704

RESUMO

After injury to the central nervous system (CNS), both neuron-intrinsic limitations on regenerative responses and inhibitory factors in the injured CNS environment restrict regenerative axon growth. Instances of successful axon regrowth offer opportunities to identify features that differentiate these situations from that of the normal adult CNS. One such opportunity is provided by the kinase inhibitor RO48, which dramatically enhances neurite outgrowth of neurons in vitro and substantially increased contralateral sprouting of corticospinal tract neurons when infused intraventricularly following unilateral pyramidotomy. The authors present here a transcriptomic deconvolution of RO48-associated axon growth, with the goal of identifying transcriptional regulators associated with axon growth in the CNS. Through the use of RNA sequencing (RNA-seq) and transcription factor binding site enrichment analysis, the authors identified a list of transcription factors putatively driving differential gene expression during RO48-induced neurite outgrowth of rat hippocampal neurons in vitro. The 82 transcription factor motifs identified in this way included some with known association to axon growth regulation, such as Jun, Klf4, Myc, Atf4, Stat3, and Nfatc2, and many with no known association to axon growth. A phenotypic loss-of-function screen was carried out to evaluate these transcription factors for their roles in neurite outgrowth; this screen identified several potential outgrowth regulators. Subsequent validation suggests that the Forkhead box (Fox) family transcription factor Foxp2 restricts neurite outgrowth, while FoxO subfamily members Foxo1 and Foxo3a promote neurite outgrowth. The authors' combined transcriptomic-phenotypic screening strategy therefore allowed identification of novel transcriptional regulators of neurite outgrowth downstream of a multitarget kinase inhibitor.


Assuntos
Axônios/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Crescimento Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Transcriptoma/genética
8.
Exp Neurol ; 341: 113710, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33781732

RESUMO

Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/terapia , Animais , Dependovirus/genética , Humanos , Lentivirus/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Simplexvirus/genética
9.
Exp Neurol ; 340: 113647, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33600814

RESUMO

Testing and training animals in motor and related tasks is a cornerstone of pre-clinical behavioural and rehabilitative neuroscience. Yet manually testing and training animals in these tasks is time consuming and analyses are often subjective. Consequently, there have been many recent advances in automating both the administration and analyses of animal behavioural training and testing. This review is an in-depth appraisal of the history of, and recent developments in, the automation of animal behavioural assays used in neuroscience. We describe the use of common locomotor and non-locomotor tasks used for motor training and testing before and after nervous system injury. This includes a discussion of how these tasks help us to understand the underlying mechanisms of neurological repair and the utility of some tasks for the delivery of rehabilitative training to enhance recovery. We propose two general approaches to automation: automating the physical administration of behavioural tasks (i.e., devices used to facilitate task training, rehabilitative training, and motor testing) and leveraging the use of machine learning in behaviour analysis to generate large volumes of unbiased and comprehensive data. The advantages and disadvantages of automating various motor tasks as well as the limitations of machine learning analyses are examined. In closing, we provide a critical appraisal of the current state of automation in animal behavioural neuroscience and a prospective on some of the advances in machine learning we believe will dramatically enhance the usefulness of these approaches for behavioural neuroscientists.


Assuntos
Automação/métodos , Comportamento Animal/fisiologia , Aprendizado de Máquina , Destreza Motora/fisiologia , Reabilitação Neurológica/métodos , Desempenho Psicomotor/fisiologia , Animais , Humanos , Aprendizado de Máquina/tendências , Reabilitação Neurológica/tendências , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia
10.
J Neurosci ; 41(1): 3-10, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408132

RESUMO

In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.


Assuntos
Axônios , Neurologia/história , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Animais , História do Século XX , Camundongos , Camundongos Mutantes Neurológicos , Neurônios/fisiologia , Vias Visuais/fisiologia
11.
J Neurotrauma ; 38(10): 1399-1410, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33297844

RESUMO

Traumatic brain injury (TBI) is an extremely complex condition due to heterogeneity in injury mechanism, underlying conditions, and secondary injury. Pre-clinical and clinical researchers face challenges with reproducibility that negatively impact translation and therapeutic development for improved TBI patient outcomes. To address this challenge, TBI Pre-clinical Working Groups expanded upon previous efforts and developed common data elements (CDEs) to describe the most frequently used experimental parameters. The working groups created 913 CDEs to describe study metadata, animal characteristics, animal history, injury models, and behavioral tests. Use cases applied a set of commonly used CDEs to address and evaluate the degree of missing data resulting from combining legacy data from different laboratories for two different outcome measures (Morris water maze [MWM]; RotorRod/Rotarod). Data were cleaned and harmonized to Form Structures containing the relevant CDEs and subjected to missing value analysis. For the MWM dataset (358 animals from five studies, 44 CDEs), 50% of the CDEs contained at least one missing value, while for the Rotarod dataset (97 animals from three studies, 48 CDEs), over 60% of CDEs contained at least one missing value. Overall, 35% of values were missing across the MWM dataset, and 33% of values were missing for the Rotarod dataset, demonstrating both the feasibility and the challenge of combining legacy datasets using CDEs. The CDEs and the associated forms created here are available to the broader pre-clinical research community to promote consistent and comprehensive data acquisition, as well as to facilitate data sharing and formation of data repositories. In addition to addressing the challenge of standardization in TBI pre-clinical studies, this effort is intended to bring attention to the discrepancies in assessment and outcome metrics among pre-clinical laboratories and ultimately accelerate translation to clinical research.


Assuntos
Lesões Encefálicas Traumáticas , Elementos de Dados Comuns/normas , Modelos Animais de Doenças , Animais
12.
Neural Regen Res ; 16(5): 851-855, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33229719

RESUMO

Adeno-associated virus (AAV) is an essential instrument in the neuroscientist's toolkit, which allows delivery of DNA to provide labeling with fluorescent proteins or genetic instructions to regulate gene expression. In the field of neural regeneration, the transduction of neurons enables the observation and regulation of axon growth and regeneration, and in the future will likely be a mechanism for delivering molecular therapies to promote sprouting and regeneration after central nervous system injury. Traditional formulations of AAV preparations permit efficient viral transduction under physiologic conditions, but an improved understanding of the mechanistic limitations of AAV transduction may facilitate production of more resilient AAV strains for investigative and therapeutic purposes. We studied AAV transduction in the context of prior exposure of AAV serotype 8 (AAV8) to environmental pH within the range encountered during endosomal endocytosis (pH 7.4 to pH 4.4), during which low pH-triggered structural and autoproteolytic changes to the viral capsid are believed to be necessary for endosome escape and virus uncoating. Due to the fundamental nature of these processes, we hypothesized that premature exposure of AAV8 particles to acidic pH would decrease viral transduction of HT1080 cells in vitro, as measured by fluorescent reporter gene expression using high-content imaging analysis. We found that increasingly acidic incubation conditions were associated with concomitant reductions in transduction efficiency, and that quantitative levels of reporter gene expression in transduced cells were similarly decreased. The biggest decrease in transduction occurred between pH 7.4 and pH 6.4, suggesting the possible co-occurrence of a pH-associated event and viral inactivation within that range. Taken together, these findings indicate that exposure of AAV8 to acidic pH for as little as 1 hour is deleterious to transduction ability. Future studies are necessary to understand the pH-associated causative mechanisms involved. This study was approved by the University of Miami Institutional Animal Care and Use Committee, USA (Protocol #18-108-LF) on July 12, 2018.

13.
Nat Commun ; 11(1): 6425, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349630

RESUMO

Overcoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries.


Assuntos
Regeneração Nervosa , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/patologia , Axotomia , Gânglios Espinais/patologia , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Crescimento Neuronal , Plasticidade Neuronal , Oxirredução , Fosforilação , Regiões Promotoras Genéticas/genética , Proteína Quinase C/metabolismo , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Nervo Isquiático/fisiopatologia , Regulação para Cima
14.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318207

RESUMO

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Assuntos
Axônios/enzimologia , Axônios/patologia , Sistema Nervoso Central/patologia , Quinases do Centro Germinativo/metabolismo , Regeneração Nervosa , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Organoides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Vaccine ; 38(50): 7989-7997, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33158592

RESUMO

Pharmacological therapies for the treatment of cocaine addiction have had disappointing efficacy, and the lack of recent developments in the clinical care of cocaine-addicted patients indicates a need for novel treatment strategies. Recent studies have shown that vaccination against cocaine to elicit production of antibodies that reduce concentrations of free drug in the blood is a promising method to protect against the effects of cocaine and reduce rates of relapse. However, the poorly immunogenic nature of cocaine remains a major hurdle to active immunization. Therefore, we hypothesized that strategies to increase targeted exposure of cocaine to the immune system may produce a more effective vaccine. To specifically direct an immune response against cocaine, in the present study we have conjugated a cocaine analog to a dendrimer-based nanoparticle carrier with MHC II-binding moieties that previously has been shown to activate antigen-presenting cells necessary for antibody production. This strategy produced a rapid, prolonged, and high affinity anti-cocaine antibody response without the need for an adjuvant. Surprisingly, additional evaluation using multiple adjuvant formulations in two strains of inbred mice found adjuvants were either functionally redundant or deleterious in the vaccination against cocaine using this platform. The use of conditioned place preference in rats after administration of this vaccine provided proof of concept for the ability of this vaccine to diminish cocaine reward. Together these data demonstrate the intrinsic efficacy of an immune-targeting dendrimer-based cocaine vaccine, with a vast potential for design of future vaccines against other poorly immunogenic antigens by substitution of the conjugated cargo.


Assuntos
Cocaína , Dendrímeros , Nanopartículas , Vacinas , Adjuvantes Imunológicos , Animais , Humanos , Camundongos , Ratos , Vacinação
16.
SLAS Discov ; 25(7): 792-800, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32613890

RESUMO

The determination of signaling pathways and transcriptional networks that control various biological processes is a major challenge from both basic science and translational medicine perspectives. Because such analysis can point to critical disease driver nodes to target for therapeutic purposes, we combined data from phenotypic screening experiments and gene expression studies of mouse neurons to determine information flow through a molecular interaction network using a network propagation approach. We hypothesized that differences in information flow between control and injured conditions prioritize relevant driver nodes that cause this state change. Identifying paths likely taken from potential source nodes to a set of transcription factors (TFs), called sinks, we found that kinases are enriched among source genes sending significantly different amounts of information to TFs in an axonal injury model. Additionally, TFs found to be differentially active during axon growth were enriched in the set of sink genes that received significantly altered amounts of information from source genes. Notably, such enrichment levels hold even when restricting the set of source genes to only those kinases observed to support or hamper neurite growth. That way, we found a set of 71 source genes that send significantly different levels of information to axon growth-relevant TFs. We analyzed their information flow changes in response to axonal injury and their influences on TFs predicted to facilitate or antagonize axon growth. Finally, we drew a network diagram of the interactions and changes in information flow between these source genes and their axon growth-relevant sink TFs.


Assuntos
Axônios , Redes Reguladoras de Genes/genética , Fosfotransferases/genética , Fatores de Transcrição/genética , Animais , Perfilação da Expressão Gênica , Camundongos , Neurônios/enzimologia , Neurônios/metabolismo , Fosfotransferases/isolamento & purificação , Transdução de Sinais/genética
17.
J Neurotrauma ; 37(6): 831-838, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31608767

RESUMO

Over the last 5 years, multiple stakeholders in the field of spinal cord injury (SCI) research have initiated efforts to promote publications standards and enable sharing of experimental data. In 2016, the National Institutes of Health/National Institute of Neurological Disorders and Stroke hosted representatives from the SCI community to streamline these efforts and discuss the future of data sharing in the field according to the FAIR (Findable, Accessible, Interoperable and Reusable) data stewardship principles. As a next step, a multi-stakeholder group hosted a 2017 symposium in Washington, DC entitled "FAIR SCI Ahead: the Evolution of the Open Data Commons for Spinal Cord Injury research." The goal of this meeting was to receive feedback from the community regarding infrastructure, policies, and organization of a community-governed Open Data Commons (ODC) for pre-clinical SCI research. Here, we summarize the policy outcomes of this meeting and report on progress implementing these policies in the form of a digital ecosystem: the Open Data Commons for Spinal Cord Injury (ODC-SCI.org). ODC-SCI enables data management, harmonization, and controlled sharing of data in a manner consistent with the well-established norms of scholarly publication. Specifically, ODC-SCI is organized around virtual "laboratories" with the ability to share data within each of three distinct data-sharing spaces: within the laboratory, across verified laboratories, or publicly under a creative commons license (CC-BY 4.0) with a digital object identifier that enables data citation. The ODC-SCI implements FAIR data sharing and enables pooled data-driven discovery while crediting the generators of valuable SCI data.


Assuntos
Pesquisa Biomédica/métodos , Modelos Animais de Doenças , Disseminação de Informação/métodos , Traumatismos da Medula Espinal/terapia , Animais , Pesquisa Biomédica/estatística & dados numéricos , Humanos , Armazenamento e Recuperação da Informação/métodos , Armazenamento e Recuperação da Informação/estatística & dados numéricos , Traumatismos da Medula Espinal/diagnóstico
18.
Nat Neurosci ; 22(11): 1913-1924, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591560

RESUMO

Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.


Assuntos
Axônios/fisiologia , Epigenômica , Gânglios Espinais/fisiologia , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Acetilação , Algoritmos , Animais , Fator de Ligação a CCCTC/genética , Cromatina/metabolismo , Feminino , Gânglios Espinais/lesões , Expressão Gênica , Histonas/metabolismo , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Transgênicos , Nervo Isquiático/lesões , Análise de Sequência de RNA
19.
EMBO J ; 38(13): e101032, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268609

RESUMO

The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.


Assuntos
Gânglios Espinais/fisiologia , Histona Desacetilases/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Axônios , Células Cultivadas , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Masculino , Camundongos , Regeneração Nervosa , Fosforilação/efeitos dos fármacos , Transdução de Sinais
20.
Neuron ; 103(4): 642-657.e7, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31255486

RESUMO

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.


Assuntos
Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Trombospondina 1/fisiologia , Animais , Apoptose , Axônios/metabolismo , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Compressão Nervosa , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/fisiopatologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Opsinas de Bastonetes/deficiência , Opsinas de Bastonetes/fisiologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/fisiologia , Trombospondina 1/biossíntese , Trombospondina 1/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...